Nuprl Lemma : exp-divides

x,y:ℤ.  ((x y)  (∀n:ℕ(x^n y^n)))


Proof




Definitions occuring in Statement :  divides: a exp: i^n nat: all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q divides: a exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: uimplies: supposing a sq_type: SQType(T) guard: {T} true: True squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  exp_wf2 equal_wf nat_wf divides_wf subtype_base_sq int_subtype_base squash_wf true_wf exp-of-mul iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis intEquality multiplyEquality instantiate cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination equalityUniverse levelHypothesis natural_numberEquality applyEquality lambdaEquality imageElimination universeEquality sqequalRule imageMemberEquality baseClosed

Latex:
\mforall{}x,y:\mBbbZ{}.    ((x  |  y)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (x\^{}n  |  y\^{}n)))



Date html generated: 2017_04_17-AM-09_44_43
Last ObjectModification: 2017_02_27-PM-05_38_51

Theory : num_thy_1


Home Index