Nuprl Lemma : fact_add2

[n:ℕ]. ((n 2)! (n 2) (n 1) (n)!)


Proof




Definitions occuring in Statement :  fact: (n)! nat: uall: [x:A]. B[x] multiply: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: sq_type: SQType(T) guard: {T} and: P ∧ Q
Lemmas referenced :  subtype_base_sq nat_plus_wf set_subtype_base less_than_wf istype-int int_subtype_base nat_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf fact_add1 decidable__le intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma istype-le mul_nat_plus decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than fact_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination sqequalRule intEquality Error :lambdaEquality_alt,  natural_numberEquality hypothesisEquality setElimination rename dependent_functionElimination because_Cache unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  equalityTransitivity equalitySymmetry Error :dependent_set_memberEquality_alt,  addEquality independent_pairFormation axiomSqEquality

Latex:
\mforall{}[n:\mBbbN{}].  ((n  +  2)!  \msim{}  (n  +  2)  *  (n  +  1)  *  (n)!)



Date html generated: 2019_06_20-PM-02_30_25
Last ObjectModification: 2019_02_01-PM-01_18_35

Theory : num_thy_1


Home Index