Nuprl Lemma : int-sqrt-ext
∀x:ℕ. (∃r:ℕ [(((r * r) ≤ x) ∧ x < (r + 1) * (r + 1))])
Proof
Definitions occuring in Statement :
nat: ℕ
,
less_than: a < b
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
sq_exists: ∃x:A [B[x]]
,
and: P ∧ Q
,
multiply: n * m
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
member: t ∈ T
,
natrec: natrec,
genrec: genrec,
genrec-ap: genrec-ap,
int-sq-root,
div_nat_induction-ext,
decidable__lt,
decidable__squash,
decidable__and,
decidable__less_than',
decidable_functionality,
squash_elim,
sq_stable_from_decidable,
any: any x
,
iff_preserves_decidability,
sq_stable__from_stable,
stable__from_decidable,
uall: ∀[x:A]. B[x]
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
,
so_lambda: λ2x.t[x]
,
top: Top
,
so_apply: x[s]
,
uimplies: b supposing a
Lemmas referenced :
int-sq-root,
lifting-strict-decide,
istype-void,
strict4-decide,
lifting-strict-less,
div_nat_induction-ext,
decidable__lt,
decidable__squash,
decidable__and,
decidable__less_than',
decidable_functionality,
squash_elim,
sq_stable_from_decidable,
iff_preserves_decidability,
sq_stable__from_stable,
stable__from_decidable
Rules used in proof :
introduction,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
instantiate,
extract_by_obid,
hypothesis,
sqequalRule,
thin,
sqequalHypSubstitution,
equalityTransitivity,
equalitySymmetry,
isectElimination,
baseClosed,
Error :isect_memberEquality_alt,
voidElimination,
independent_isectElimination
Latex:
\mforall{}x:\mBbbN{}. (\mexists{}r:\mBbbN{} [(((r * r) \mleq{} x) \mwedge{} x < (r + 1) * (r + 1))])
Date html generated:
2019_06_20-PM-02_33_29
Last ObjectModification:
2019_04_15-PM-10_31_03
Theory : num_thy_1
Home
Index