Nuprl Lemma : int-sqrt-ext

x:ℕ(∃r:ℕ [(((r r) ≤ x) ∧ x < (r 1) (r 1))])


Proof




Definitions occuring in Statement :  nat: less_than: a < b le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q multiply: m add: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T natrec: natrec genrec: genrec genrec-ap: genrec-ap int-sq-root div_nat_induction-ext decidable__lt decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim sq_stable_from_decidable any: any x iff_preserves_decidability sq_stable__from_stable stable__from_decidable uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  int-sq-root lifting-strict-decide istype-void strict4-decide lifting-strict-less div_nat_induction-ext decidable__lt decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}x:\mBbbN{}.  (\mexists{}r:\mBbbN{}  [(((r  *  r)  \mleq{}  x)  \mwedge{}  x  <  (r  +  1)  *  (r  +  1))])



Date html generated: 2019_06_20-PM-02_33_29
Last ObjectModification: 2019_04_15-PM-10_31_03

Theory : num_thy_1


Home Index