Nuprl Lemma : lcm-assoc-nat

[n,m,k:ℕ].  (lcm(n;lcm(m;k)) lcm(lcm(n;m);k) ∈ ℤ)


Proof




Definitions occuring in Statement :  lcm: lcm(a;b) nat: uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B prop: nat:
Lemmas referenced :  nat_wf lcm-unique-nat lcm_wf_nat divides_wf lcm_wf lcm-is-lcm-nat divides_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache dependent_functionElimination independent_functionElimination independent_pairFormation productElimination lambdaFormation setElimination rename intEquality

Latex:
\mforall{}[n,m,k:\mBbbN{}].    (lcm(n;lcm(m;k))  =  lcm(lcm(n;m);k))



Date html generated: 2016_05_14-PM-09_25_40
Last ObjectModification: 2015_12_26-PM-08_03_00

Theory : num_thy_1


Home Index