Nuprl Lemma : lcm-gcd-absorption

[n,m:ℕ].  (lcm(n;gcd(n;m)) n ∈ ℤ)


Proof




Definitions occuring in Statement :  lcm: lcm(a;b) gcd: gcd(a;b) nat: uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] prop: and: P ∧ Q cand: c∧ B implies:  Q
Lemmas referenced :  nat_wf gcd_wf gcd-non-neg le_wf divides_reflexivity gcd_is_divisor_1 divides_wf lcm-unique-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut equalitySymmetry hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache dependent_set_memberEquality dependent_functionElimination setElimination rename natural_numberEquality independent_pairFormation productElimination lambdaFormation intEquality independent_functionElimination

Latex:
\mforall{}[n,m:\mBbbN{}].    (lcm(n;gcd(n;m))  =  n)



Date html generated: 2016_05_14-PM-09_25_44
Last ObjectModification: 2015_12_26-PM-08_02_56

Theory : num_thy_1


Home Index