Nuprl Lemma : lcm-gcd-absorption
∀[n,m:ℕ].  (lcm(n;gcd(n;m)) = n ∈ ℤ)
Proof
Definitions occuring in Statement : 
lcm: lcm(a;b)
, 
gcd: gcd(a;b)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
Lemmas referenced : 
nat_wf, 
gcd_wf, 
gcd-non-neg, 
le_wf, 
divides_reflexivity, 
gcd_is_divisor_1, 
divides_wf, 
lcm-unique-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
equalitySymmetry, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
dependent_set_memberEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
natural_numberEquality, 
independent_pairFormation, 
productElimination, 
lambdaFormation, 
intEquality, 
independent_functionElimination
Latex:
\mforall{}[n,m:\mBbbN{}].    (lcm(n;gcd(n;m))  =  n)
Date html generated:
2016_05_14-PM-09_25_44
Last ObjectModification:
2015_12_26-PM-08_02_56
Theory : num_thy_1
Home
Index