Nuprl Lemma : polymorphic-constant-base

[T:Type]. ∀f:Base ⟶ T. ∃t:T. ∀x:Base. ((f x) t ∈ T) supposing mono(T) ∧ value-type(T)


Proof




Definitions occuring in Statement :  mono: mono(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q mono: mono(T) all: x:A. B[x] implies:  Q prop: value-type: value-type(T) has-value: (a)↓ exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] is-above: is-above(T;a;z) cand: c∧ B not: ¬A false: False
Lemmas referenced :  is-above_wf base_wf equal-wf-base all_wf equal_wf mono_wf value-type_wf bottom_diverge exception-not-bottom has-value_wf_base is-exception_wf sqle_wf_base and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality axiomEquality hypothesis extract_by_obid isectElimination cumulativity isect_memberEquality axiomSqleEquality because_Cache equalityTransitivity equalitySymmetry rename lambdaFormation dependent_pairFormation applyEquality functionExtensionality baseClosed functionEquality productEquality universeEquality pointwiseFunctionalityForEquality independent_functionElimination baseApply closedConclusion independent_pairFormation divergentSqle sqleRule sqleReflexivity voidElimination instantiate dependent_set_memberEquality applyLambdaEquality setElimination

Latex:
\mforall{}[T:Type].  \mforall{}f:Base  {}\mrightarrow{}  T.  \mexists{}t:T.  \mforall{}x:Base.  ((f  x)  =  t)  supposing  mono(T)  \mwedge{}  value-type(T)



Date html generated: 2018_05_21-PM-01_11_34
Last ObjectModification: 2018_05_01-PM-04_36_47

Theory : num_thy_1


Home Index