Nuprl Lemma : prime-mult
∀n:{2...}. ∀x:ℤ.  (prime(n * x) 
⇒ (prime(n) ∧ (x ~ 1)))
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
assoced: a ~ b
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
int_upper: {i...}
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
prime-mul, 
prime_wf, 
int_upper_wf, 
assoced_elim, 
int_upper_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
assoced-prime, 
mul-one, 
assoced_functionality_wrt_assoced, 
multiply_functionality_wrt_assoced, 
assoced_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
unionElimination, 
isectElimination, 
multiplyEquality, 
intEquality, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
minusEquality
Latex:
\mforall{}n:\{2...\}.  \mforall{}x:\mBbbZ{}.    (prime(n  *  x)  {}\mRightarrow{}  (prime(n)  \mwedge{}  (x  \msim{}  1)))
Date html generated:
2019_06_20-PM-02_23_11
Last ObjectModification:
2018_09_22-PM-05_54_49
Theory : num_thy_1
Home
Index