Nuprl Lemma : prime-mult

n:{2...}. ∀x:ℤ.  (prime(n x)  (prime(n) ∧ (x 1)))


Proof




Definitions occuring in Statement :  prime: prime(a) assoced: b int_upper: {i...} all: x:A. B[x] implies:  Q and: P ∧ Q multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T int_upper: {i...} or: P ∨ Q uall: [x:A]. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q cand: c∧ B guard: {T} uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top rev_implies:  Q
Lemmas referenced :  prime-mul prime_wf int_upper_wf assoced_elim int_upper_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf assoced-prime mul-one assoced_functionality_wrt_assoced multiply_functionality_wrt_assoced assoced_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis hypothesisEquality independent_functionElimination unionElimination isectElimination multiplyEquality intEquality natural_numberEquality productElimination independent_isectElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation minusEquality

Latex:
\mforall{}n:\{2...\}.  \mforall{}x:\mBbbZ{}.    (prime(n  *  x)  {}\mRightarrow{}  (prime(n)  \mwedge{}  (x  \msim{}  1)))



Date html generated: 2019_06_20-PM-02_23_11
Last ObjectModification: 2018_09_22-PM-05_54_49

Theory : num_thy_1


Home Index