Nuprl Lemma : assoced-prime
∀p,q:ℤ.  ((p ~ q) 
⇒ prime(p) 
⇒ prime(q))
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
assoced: a ~ b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
prop: ℙ
, 
prime: prime(a)
, 
cand: A c∧ B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
assoced: a ~ b
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
assoced_elim, 
subtype_base_sq, 
int_subtype_base, 
prime_wf, 
assoced_wf, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
divides_wf, 
divides_invar_1, 
minus-minus, 
divides_invar_2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
applyEquality, 
baseClosed, 
multiplyEquality, 
promote_hyp, 
minusEquality, 
inlFormation, 
inrFormation
Latex:
\mforall{}p,q:\mBbbZ{}.    ((p  \msim{}  q)  {}\mRightarrow{}  prime(p)  {}\mRightarrow{}  prime(q))
Date html generated:
2019_06_20-PM-02_23_05
Last ObjectModification:
2018_09_22-PM-05_52_04
Theory : num_thy_1
Home
Index