Nuprl Lemma : assoced-prime

p,q:ℤ.  ((p q)  prime(p)  prime(q))


Proof




Definitions occuring in Statement :  prime: prime(a) assoced: b all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} prop: prime: prime(a) cand: c∧ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top subtype_rel: A ⊆B assoced: b rev_implies:  Q
Lemmas referenced :  assoced_elim subtype_base_sq int_subtype_base prime_wf assoced_wf full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf itermMinus_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_term_value_minus_lemma int_formula_prop_wf equal-wf-base divides_wf divides_invar_1 minus-minus divides_invar_2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry natural_numberEquality approximateComputation dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation applyEquality baseClosed multiplyEquality promote_hyp minusEquality inlFormation inrFormation

Latex:
\mforall{}p,q:\mBbbZ{}.    ((p  \msim{}  q)  {}\mRightarrow{}  prime(p)  {}\mRightarrow{}  prime(q))



Date html generated: 2019_06_20-PM-02_23_05
Last ObjectModification: 2018_09_22-PM-05_52_04

Theory : num_thy_1


Home Index