Nuprl Lemma : prime-mul
∀x,y:ℤ.  (prime(x * y) 
⇒ ((x ~ 1) ∨ (y ~ 1)))
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
assoced: a ~ b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
decidable: Dec(P)
Lemmas referenced : 
prime_elim, 
prime_wf, 
equal-wf-base, 
int_subtype_base, 
assoced_wf, 
assoced_elim, 
mul_cancel_in_eq, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
nequal_wf, 
decidable__equal_int, 
itermMinus_wf, 
int_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
multiplyEquality, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
isectElimination, 
intEquality, 
dependent_pairFormation, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
unionElimination, 
inlFormation, 
natural_numberEquality, 
inrFormation, 
dependent_set_memberEquality, 
independent_isectElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
minusEquality
Latex:
\mforall{}x,y:\mBbbZ{}.    (prime(x  *  y)  {}\mRightarrow{}  ((x  \msim{}  1)  \mvee{}  (y  \msim{}  1)))
Date html generated:
2019_06_20-PM-02_23_08
Last ObjectModification:
2018_09_22-PM-05_25_11
Theory : num_thy_1
Home
Index