Nuprl Lemma : int-eq-constraint-factor-sym

[a:ℤ]. ∀[g:ℤ-o]. ∀[xs,L:ℤ List].
  uiff([a L] ⋅ [1 xs] 0 ∈ ℤ;((a rem g) 0 ∈ ℤ) ∧ ([a ÷ L] ⋅ [1 xs] 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  int-vec-mul: as integer-dot-product: as ⋅ bs cons: [a b] list: List int_nzero: -o uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q remainder: rem m divide: n ÷ m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} int_nzero: -o prop: nequal: a ≠ b ∈  not: ¬A false: False squash: T true: True
Lemmas referenced :  int-eq-constraint-factor subtype_base_sq int_subtype_base integer-dot-product-comm cons_wf int-vec-mul_wf equal-wf-T-base integer-dot-product_wf equal_wf list_wf int_nzero_wf squash_wf true_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation productElimination independent_isectElimination instantiate because_Cache dependent_functionElimination independent_functionElimination sqequalRule intEquality natural_numberEquality setElimination rename equalityTransitivity equalitySymmetry promote_hyp independent_pairEquality axiomEquality baseClosed productEquality remainderEquality lambdaFormation voidElimination divideEquality hyp_replacement applyEquality lambdaEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[g:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[xs,L:\mBbbZ{}  List].
    uiff([a  /  g  *  L]  \mcdot{}  [1  /  xs]  =  0;((a  rem  g)  =  0)  \mwedge{}  ([a  \mdiv{}  g  /  L]  \mcdot{}  [1  /  xs]  =  0))



Date html generated: 2016_10_21-AM-09_52_16
Last ObjectModification: 2016_07_12-AM-05_10_54

Theory : omega


Home Index