Nuprl Lemma : int-eq-constraint-factor
∀[a:ℤ]. ∀[g:ℤ-o]. ∀[xs,L:ℤ List].
  uiff([1 / xs] ⋅ [a / g * L] = 0 ∈ ℤ;((a rem g) = 0 ∈ ℤ) ∧ ([1 / xs] ⋅ [a ÷ g / L] = 0 ∈ ℤ))
Proof
Definitions occuring in Statement : 
int-vec-mul: a * as
, 
integer-dot-product: as ⋅ bs
, 
cons: [a / b]
, 
list: T List
, 
int_nzero: ℤ-o
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
remainder: n rem m
, 
divide: n ÷ m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
sq_type: SQType(T)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
int_dot_cons_lemma, 
equal-wf-T-base, 
integer-dot-product_wf, 
cons_wf, 
int-vec-mul_wf, 
equal_wf, 
list_wf, 
int_nzero_wf, 
int-dot-mul-right, 
subtype_base_sq, 
int_subtype_base, 
add-associates, 
minus-one-mul, 
one-mul, 
zero-add, 
add-commutes, 
add-mul-special, 
zero-mul, 
add-zero, 
minus-one-mul-top, 
mul-swap, 
squash_wf, 
true_wf, 
rem-exact, 
iff_weakening_equal, 
mul_cancel_in_eq, 
mul-distributes, 
mul-commutes, 
div_rem_sum, 
mul_preserves_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
isectElimination, 
intEquality, 
natural_numberEquality, 
hypothesisEquality, 
setElimination, 
rename, 
baseClosed, 
productEquality, 
because_Cache, 
remainderEquality, 
lambdaFormation, 
independent_functionElimination, 
divideEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
minusEquality, 
multiplyEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
hyp_replacement
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[g:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[xs,L:\mBbbZ{}  List].
    uiff([1  /  xs]  \mcdot{}  [a  /  g  *  L]  =  0;((a  rem  g)  =  0)  \mwedge{}  ([1  /  xs]  \mcdot{}  [a  \mdiv{}  g  /  L]  =  0))
Date html generated:
2017_04_14-AM-08_56_12
Last ObjectModification:
2017_02_27-PM-03_39_50
Theory : omega
Home
Index