Nuprl Lemma : int-eq-constraint-factor

[a:ℤ]. ∀[g:ℤ-o]. ∀[xs,L:ℤ List].
  uiff([1 xs] ⋅ [a L] 0 ∈ ℤ;((a rem g) 0 ∈ ℤ) ∧ ([1 xs] ⋅ [a ÷ L] 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  int-vec-mul: as integer-dot-product: as ⋅ bs cons: [a b] list: List int_nzero: -o uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q remainder: rem m divide: n ÷ m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] top: Top prop: int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q false: False sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_dot_cons_lemma equal-wf-T-base integer-dot-product_wf cons_wf int-vec-mul_wf equal_wf list_wf int_nzero_wf int-dot-mul-right subtype_base_sq int_subtype_base add-associates minus-one-mul one-mul zero-add add-commutes add-mul-special zero-mul add-zero minus-one-mul-top mul-swap squash_wf true_wf rem-exact iff_weakening_equal mul_cancel_in_eq mul-distributes mul-commutes div_rem_sum mul_preserves_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution sqequalRule extract_by_obid dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis productElimination independent_pairEquality axiomEquality isectElimination intEquality natural_numberEquality hypothesisEquality setElimination rename baseClosed productEquality because_Cache remainderEquality lambdaFormation independent_functionElimination divideEquality equalityTransitivity equalitySymmetry addEquality minusEquality multiplyEquality instantiate cumulativity independent_isectElimination applyEquality lambdaEquality imageElimination universeEquality imageMemberEquality hyp_replacement

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[g:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[xs,L:\mBbbZ{}  List].
    uiff([1  /  xs]  \mcdot{}  [a  /  g  *  L]  =  0;((a  rem  g)  =  0)  \mwedge{}  ([1  /  xs]  \mcdot{}  [a  \mdiv{}  g  /  L]  =  0))



Date html generated: 2017_04_14-AM-08_56_12
Last ObjectModification: 2017_02_27-PM-03_39_50

Theory : omega


Home Index