Nuprl Lemma : or-quotient-true

P:ℙ(⇃(P ∨ P))  (⇃(P) ∨ ⇃P)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] prop: all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q true: True
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a or: P ∨ Q quotient: x,y:A//B[x; y] and: P ∧ Q not: ¬A false: False true: True
Lemmas referenced :  or_wf quotient_wf true_wf equiv_rel_true not_wf quotient-member-eq equal_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation rename introduction pointwiseFunctionalityForEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality hypothesis because_Cache independent_isectElimination pertypeElimination productElimination equalityTransitivity equalitySymmetry unionElimination inlEquality dependent_functionElimination independent_functionElimination voidElimination inrEquality natural_numberEquality productEquality universeEquality

Latex:
\mforall{}P:\mBbbP{}.  (\00D9(P  \mvee{}  (\mneg{}P))  {}\mRightarrow{}  (\00D9(P)  \mvee{}  \00D9(\mneg{}P)))



Date html generated: 2016_05_14-AM-06_08_36
Last ObjectModification: 2015_12_26-AM-11_48_17

Theory : quot_1


Home Index