Nuprl Lemma : rel_plus-of-restriction

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].  R|P+ => R+|P


Proof




Definitions occuring in Statement :  rel_plus: R+ rel-restriction: R|P rel_implies: R1 => R2 uall: [x:A]. B[x] prop: function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: implies:  Q rel-restriction: R|P rel_implies: R1 => R2 infix_ap: y all: x:A. B[x] and: P ∧ Q cand: c∧ B
Lemmas referenced :  rel_plus_minimal rel-restriction_wf rel_plus_wf and_wf rel-rel-plus restriction-of-transitive rel_plus_trans
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation functionEquality cumulativity hypothesisEquality universeEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule independent_functionElimination lambdaFormation productElimination independent_pairFormation applyEquality dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    R|P\msupplus{}  =>  R\msupplus{}|P



Date html generated: 2016_05_14-PM-03_55_32
Last ObjectModification: 2015_12_26-PM-06_55_38

Theory : relations2


Home Index