Nuprl Lemma : rel_plus-of-restriction
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].  R|P+ => R+|P
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
rel-restriction: R|P
, 
rel_implies: R1 => R2
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
rel-restriction: R|P
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
rel_plus_minimal, 
rel-restriction_wf, 
rel_plus_wf, 
and_wf, 
rel-rel-plus, 
restriction-of-transitive, 
rel_plus_trans
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
independent_functionElimination, 
lambdaFormation, 
productElimination, 
independent_pairFormation, 
applyEquality, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    R|P\msupplus{}  =>  R\msupplus{}|P
Date html generated:
2016_05_14-PM-03_55_32
Last ObjectModification:
2015_12_26-PM-06_55_38
Theory : relations2
Home
Index