Nuprl Lemma : rel_star_order

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (WellFnd{i}(T;x,y.x y)  Order(T;x,y.x (R^*) y))


Proof




Definitions occuring in Statement :  rel_star: R^* order: Order(T;x,y.R[x; y]) wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q order: Order(T;x,y.R[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] member: t ∈ T uimplies: supposing a cand: c∧ B trans: Trans(T;x,y.E[x; y]) prop: infix_ap: y anti_sym: AntiSym(T;x,y.R[x; y]) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q or: P ∨ Q not: ¬A false: False exists: x:A. B[x]
Lemmas referenced :  rel_star_weakening rel_star_transitivity rel_star_wf wellfounded_wf rel_plus_irreflexive rel_star_iff rel-star-rel-plus2 rel-star-rel-plus3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache independent_isectElimination hypothesis independent_functionElimination applyEquality sqequalRule lambdaEquality functionEquality cumulativity universeEquality dependent_functionElimination productElimination unionElimination voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (WellFnd\{i\}(T;x,y.x  R  y)  {}\mRightarrow{}  Order(T;x,y.x  rel\_star(T;  R)  y))



Date html generated: 2016_05_14-PM-03_53_58
Last ObjectModification: 2015_12_26-PM-06_56_17

Theory : relations2


Home Index