Nuprl Lemma : rel_star_order
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (WellFnd{i}(T;x,y.x R y) ⇒ Order(T;x,y.x (R^*) y))
Proof
Definitions occuring in Statement : 
rel_star: R^*, 
order: Order(T;x,y.R[x; y]), 
wellfounded: WellFnd{i}(A;x,y.R[x; y]), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
infix_ap: x f y, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
order: Order(T;x,y.R[x; y]), 
and: P ∧ Q, 
refl: Refl(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
cand: A c∧ B, 
trans: Trans(T;x,y.E[x; y]), 
prop: ℙ, 
infix_ap: x f y, 
anti_sym: AntiSym(T;x,y.R[x; y]), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x]
Lemmas referenced : 
rel_star_weakening, 
rel_star_transitivity, 
rel_star_wf, 
wellfounded_wf, 
rel_plus_irreflexive, 
rel_star_iff, 
rel-star-rel-plus2, 
rel-star-rel-plus3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
unionElimination, 
voidElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (WellFnd\{i\}(T;x,y.x  R  y)  {}\mRightarrow{}  Order(T;x,y.x  rel\_star(T;  R)  y))
Date html generated:
2016_05_14-PM-03_53_58
Last ObjectModification:
2015_12_26-PM-06_56_17
Theory : relations2
Home
Index