Nuprl Lemma : rel_plus_irreflexive

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (WellFnd{i}(T;x,y.x y)  (∀x:T. (x R+ x))))


Proof




Definitions occuring in Statement :  rel_plus: R+ wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] not: ¬A false: False wellfounded: WellFnd{i}(A;x,y.R[x; y]) so_lambda: λ2x.t[x] infix_ap: y prop: subtype_rel: A ⊆B so_apply: x[s] guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] or: P ∨ Q exists: x:A. B[x] and: P ∧ Q uimplies: supposing a trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  not_wf rel_plus_wf all_wf wellfounded_wf rel_plus_implies wellfounded-irreflexive rel_plus_trans rel-rel-plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution hypothesis isectElimination sqequalRule lambdaEquality lemma_by_obid applyEquality hypothesisEquality because_Cache independent_functionElimination voidElimination functionEquality dependent_functionElimination cumulativity universeEquality isect_memberEquality unionElimination productElimination independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (WellFnd\{i\}(T;x,y.x  R  y)  {}\mRightarrow{}  (\mforall{}x:T.  (\mneg{}(x  R\msupplus{}  x))))



Date html generated: 2016_05_14-PM-03_53_55
Last ObjectModification: 2015_12_26-PM-06_56_27

Theory : relations2


Home Index