Nuprl Lemma : rel_plus_irreflexive
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (WellFnd{i}(T;x,y.x R y) 
⇒ (∀x:T. (¬(x R+ x))))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
false: False
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
not_wf, 
rel_plus_wf, 
all_wf, 
wellfounded_wf, 
rel_plus_implies, 
wellfounded-irreflexive, 
rel_plus_trans, 
rel-rel-plus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
functionEquality, 
dependent_functionElimination, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
unionElimination, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (WellFnd\{i\}(T;x,y.x  R  y)  {}\mRightarrow{}  (\mforall{}x:T.  (\mneg{}(x  R\msupplus{}  x))))
Date html generated:
2016_05_14-PM-03_53_55
Last ObjectModification:
2015_12_26-PM-06_56_27
Theory : relations2
Home
Index