Nuprl Lemma : rel_plus_implies

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  ((x R+ y)  ((x y) ∨ (∃z:T. ((x R+ z) ∧ (z y)))))


Proof




Definitions occuring in Statement :  rel_plus: R+ uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q rel_plus: R+ infix_ap: y exists: x:A. B[x] member: t ∈ T prop: nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  bfalse: ff btrue: tt guard: {T} bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B less_than: a < b squash: T true: True
Lemmas referenced :  infix_ap_wf rel_exp_wf false_wf le_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf all_wf or_wf exists_wf rel_plus_wf nat_plus_wf primrec-wf-nat-plus nat_plus_subtype_nat eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf intformeq_wf int_formula_prop_eq_lemma equal_wf bnot_wf not_wf subtract_wf add-subtract-cancel uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot less_than_wf decidable__lt not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule productElimination thin cut instantiate introduction extract_by_obid isectElimination cumulativity hypothesisEquality because_Cache universeEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation hypothesis functionExtensionality applyEquality rename setElimination dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll functionEquality productEquality independent_functionElimination inlFormation equalitySymmetry hyp_replacement applyLambdaEquality inrFormation baseApply closedConclusion baseClosed equalityTransitivity equalityElimination impliesFunctionality imageMemberEquality minusEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    ((x  R\msupplus{}  y)  {}\mRightarrow{}  ((x  R  y)  \mvee{}  (\mexists{}z:T.  ((x  R\msupplus{}  z)  \mwedge{}  (z  R  y)))))



Date html generated: 2017_04_17-AM-09_26_06
Last ObjectModification: 2017_02_27-PM-05_27_01

Theory : relations2


Home Index