Nuprl Lemma : rel-star-rel-plus3

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y,z:T.  ((x (R^*) y)  (y R+ z)  (x R+ z))


Proof




Definitions occuring in Statement :  rel_plus: R+ rel_star: R^* uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_plus: R+ rel_star: R^* infix_ap: y uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] nat_plus: + nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q
Lemmas referenced :  less_than_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties nat_plus_properties rel_exp_add nat_wf nat_plus_subtype_nat rel_exp_wf nat_plus_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination hypothesis lambdaEquality applyEquality hypothesisEquality functionEquality cumulativity universeEquality dependent_functionElimination independent_functionElimination dependent_pairFormation dependent_set_memberEquality addEquality setElimination rename natural_numberEquality unionElimination independent_isectElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y,z:T.    ((x  rel\_star(T;  R)  y)  {}\mRightarrow{}  (y  R\msupplus{}  z)  {}\mRightarrow{}  (x  R\msupplus{}  z))



Date html generated: 2016_05_14-PM-03_53_39
Last ObjectModification: 2016_01_14-PM-11_10_40

Theory : relations2


Home Index