Nuprl Lemma : rel-star-rel-plus2
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀x,y,z:T. ((x R y)
⇒ (y (R^*) z)
⇒ (x R+ z))
Proof
Definitions occuring in Statement :
rel_plus: R+
,
rel_star: R^*
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
infix_ap: x f y
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
rel_plus: R+
,
rel_star: R^*
,
infix_ap: x f y
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
nat_plus: ℕ+
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
false: False
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
subtract: n - m
,
subtype_rel: A ⊆r B
,
top: Top
,
less_than': less_than'(a;b)
,
true: True
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
cand: A c∧ B
Lemmas referenced :
equal_wf,
and_wf,
int_formula_prop_less_lemma,
intformless_wf,
subtract_wf,
infix_ap_wf,
add-subtract-cancel,
le_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
nat_properties,
rel_exp_iff2,
nat_plus_subtype_nat,
less_than_wf,
le-add-cancel,
add-zero,
add-associates,
add_functionality_wrt_le,
add-commutes,
minus-one-mul-top,
zero-add,
minus-one-mul,
minus-add,
condition-implies-le,
not-lt-2,
false_wf,
decidable__lt,
rel_exp_wf,
nat_wf,
exists_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
cut,
lemma_by_obid,
isectElimination,
hypothesis,
lambdaEquality,
applyEquality,
hypothesisEquality,
functionEquality,
cumulativity,
universeEquality,
dependent_pairFormation,
dependent_set_memberEquality,
addEquality,
setElimination,
rename,
natural_numberEquality,
dependent_functionElimination,
unionElimination,
independent_pairFormation,
voidElimination,
independent_functionElimination,
independent_isectElimination,
isect_memberEquality,
voidEquality,
intEquality,
because_Cache,
minusEquality,
int_eqEquality,
computeAll,
inlFormation,
productEquality,
instantiate
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. \mforall{}x,y,z:T. ((x R y) {}\mRightarrow{} (y rel\_star(T; R) z) {}\mRightarrow{} (x R\msupplus{} z))
Date html generated:
2016_05_14-PM-03_53_37
Last ObjectModification:
2016_01_14-PM-11_10_47
Theory : relations2
Home
Index