Nuprl Lemma : shift-play_wf

[Pos:Type]. ∀[Mv:Pos ⟶ Type]. ∀[n:ℕ]. ∀[p:ℕn ⟶ MoveChoice(Pos;a.Mv[a])].
  (shift-play(p) ∈ ℕ1 ⟶ MoveChoice(Pos;a.Mv[a]))


Proof




Definitions occuring in Statement :  shift-play: shift-play(p) MoveChoice: MoveChoice(Pos;a.Mv[a]) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T shift-play: shift-play(p) nat: int_seg: {i..j-} uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a lelt: i ≤ j < k ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top subtract: m prop: le: A ≤ B less_than: a < b so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_wf MoveChoice_wf int_seg_wf lelt_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf itermSubtract_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt subtract_wf decidable__le nat_properties add-member-int_seg2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality applyEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesis productElimination independent_isectElimination dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbN{}n  {}\mrightarrow{}  MoveChoice(Pos;a.Mv[a])].
    (shift-play(p)  \mmember{}  \mBbbN{}n  -  1  {}\mrightarrow{}  MoveChoice(Pos;a.Mv[a]))



Date html generated: 2016_05_14-PM-03_56_44
Last ObjectModification: 2016_01_14-PM-09_43_37

Theory : spread


Home Index