Nuprl Lemma : strong-subtype-iff-preserves-singleton

[A,B:Type].  uiff(strong-subtype(A;B);(A ⊆B) ∧ (∀a:A. ({a:B} ⊆{a:A})))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) singleton: {a:T} uiff: uiff(P;Q) subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q universe: Type
Definitions unfolded in proof :  strong-subtype: strong-subtype(A;B) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a cand: c∧ B all: x:A. B[x] subtype_rel: A ⊆B singleton: {a:T} prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  singleton_properties singleton_wf subtype_rel_wf exists_wf equal_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution productElimination thin hypothesis lambdaFormation lambdaEquality extract_by_obid isectElimination hypothesisEquality because_Cache setElimination rename cumulativity applyEquality independent_pairEquality axiomEquality dependent_functionElimination productEquality setEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality dependent_pairFormation

Latex:
\mforall{}[A,B:Type].    uiff(strong-subtype(A;B);(A  \msubseteq{}r  B)  \mwedge{}  (\mforall{}a:A.  (\{a:B\}  \msubseteq{}r  \{a:A\})))



Date html generated: 2017_04_14-AM-07_36_44
Last ObjectModification: 2017_02_27-PM-03_09_29

Theory : subtype_1


Home Index