Nuprl Lemma : prec-definition
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)]. ∀[A:P ⟶ Type]. ∀[R:i:P ⟶ prec(lbl,p.a[lbl;p];i) ⟶ A[i] ⟶ ℙ].
  ((∀i:P. ∀x:prec(lbl,p.a[lbl;p];i).
      ((∀j:P. ∀z:{z:prec(lbl,p.a[lbl;p];j)| prec_sub+(P;lbl,p.a[lbl;p]) <j, z> <i, x>} .  (∃a:A[j] [R[j;z;a]])) 
⇒ (∃a:A\000C[i] [R[i;x;a]])))
  
⇒ (∀i:P. ∀x:prec(lbl,p.a[lbl;p];i).  (∃a:A[i] [R[i;x;a]])))
Proof
Definitions occuring in Statement : 
prec_sub+: prec_sub+(P;lbl,p.a[lbl; p])
, 
prec: prec(lbl,p.a[lbl; p];i)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2;s3]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
prec-induction-ext, 
sq_exists_wf, 
subtype-TYPE, 
prec_wf, 
istype-atom, 
prec_sub+_wf, 
subtype_rel_self, 
list_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :lambdaFormation_alt, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :universeIsType, 
Error :inhabitedIsType, 
independent_functionElimination, 
dependent_functionElimination, 
Error :functionIsType, 
because_Cache, 
Error :setIsType, 
Error :dependent_pairEquality_alt, 
instantiate, 
universeEquality, 
setElimination, 
rename, 
unionEquality, 
cumulativity
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[R:i:P
                                                                                                                                                {}\mrightarrow{}  prec(lbl,p.a[lbl;p];i)
                                                                                                                                                {}\mrightarrow{}  A[i]
                                                                                                                                                {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}i:P.  \mforall{}x:prec(lbl,p.a[lbl;p];i).
            ((\mforall{}j:P.  \mforall{}z:\{z:prec(lbl,p.a[lbl;p];j)|  prec\_sub+(P;lbl,p.a[lbl;p])  <j,  z>  <i,  x>\}  .    (\mexists{}a:A[j]  [\000CR[j;z;a]]))
            {}\mRightarrow{}  (\mexists{}a:A[i]  [R[i;x;a]])))
    {}\mRightarrow{}  (\mforall{}i:P.  \mforall{}x:prec(lbl,p.a[lbl;p];i).    (\mexists{}a:A[i]  [R[i;x;a]])))
Date html generated:
2019_06_20-PM-02_14_32
Last ObjectModification:
2019_04_11-AM-08_44_21
Theory : tuples
Home
Index