Nuprl Lemma : prec-sq

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[i:P]. ∀[x:prec(lbl,p.a[lbl;p];i)].
  (x mk-prec(prec-label(x);prec-tuple(x)))


Proof




Definitions occuring in Statement :  prec-tuple: prec-tuple(x) prec-label: prec-label(x) mk-prec: mk-prec(lbl;x) prec: prec(lbl,p.a[lbl; p];i) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] union: left right atom: Atom universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: all: x:A. B[x] implies:  Q uimplies: supposing a prec-tuple: prec-tuple(x) prec-label: prec-label(x) mk-prec: mk-prec(lbl;x) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  prec-ext subtype_rel_weakening prec_wf istype-atom less_than_wf length_wf tuple-type_wf map_wf list_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule Error :lambdaEquality_alt,  Error :inhabitedIsType,  productEquality setEquality atomEquality natural_numberEquality instantiate unionEquality cumulativity universeEquality equalityTransitivity equalitySymmetry Error :lambdaFormation_alt,  unionElimination Error :equalityIstype,  dependent_functionElimination independent_functionElimination Error :unionIsType,  setElimination rename independent_isectElimination productElimination axiomSqEquality Error :universeIsType,  Error :functionIsType

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[i:P].  \mforall{}[x:prec(lbl,p.a[lbl;p];i)].
    (x  \msim{}  mk-prec(prec-label(x);prec-tuple(x)))



Date html generated: 2019_06_20-PM-02_05_33
Last ObjectModification: 2019_02_28-PM-03_20_53

Theory : tuples


Home Index