Nuprl Lemma : b_all-cons

[B:Type]. ∀b:bag(B). ∀P:B ⟶ ℙ. ∀x:B.  ((∀b:B. SqStable(P[b]))  (b_all(B;x.b;x.P[x]) ⇐⇒ P[x] ∧ b_all(B;b;x.P[x])))


Proof




Definitions occuring in Statement :  b_all: b_all(T;b;x.P[x]) cons-bag: x.b bag: bag(T) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q subtype_rel: A ⊆B b_all: b_all(T;b;x.P[x]) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a sq_or: a ↓∨ b or: P ∨ Q squash: T sq_stable: SqStable(P) guard: {T}
Lemmas referenced :  b_all_wf cons-bag_wf all_wf sq_stable_wf bag_wf bag-member-cons bag-member_wf sq_stable__bag-member equal_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality productElimination productEquality universeEquality functionEquality dependent_functionElimination independent_functionElimination because_Cache independent_isectElimination inlFormation imageMemberEquality baseClosed inrFormation imageElimination unionElimination equalitySymmetry dependent_set_memberEquality setElimination rename setEquality hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[B:Type]
    \mforall{}b:bag(B).  \mforall{}P:B  {}\mrightarrow{}  \mBbbP{}.  \mforall{}x:B.
        ((\mforall{}b:B.  SqStable(P[b]))  {}\mRightarrow{}  (b\_all(B;x.b;x.P[x])  \mLeftarrow{}{}\mRightarrow{}  P[x]  \mwedge{}  b\_all(B;b;x.P[x])))



Date html generated: 2016_10_25-AM-10_29_01
Last ObjectModification: 2016_07_12-AM-06_45_05

Theory : bags


Home Index