Nuprl Lemma : b_all-squash-exists-bag2

[A,B:Type]. ∀[as:bag(A)]. ∀[P:A ⟶ B ⟶ ℙ].
  ↓∃bs:bag(A × B). ((bag-map(λx.(fst(x));bs) as ∈ bag(A)) ∧ b_all(A × B;bs;x.↓P[fst(x);snd(x)])) 
  supposing b_all(A;as;x.↓∃y:B. P[x;y])


Proof




Definitions occuring in Statement :  b_all: b_all(T;b;x.P[x]) bag-map: bag-map(f;bs) bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) exists: x:A. B[x] squash: T and: P ∧ Q lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T exists: x:A. B[x] and: P ∧ Q cand: c∧ B b_all: b_all(T;b;x.P[x]) all: x:A. B[x] implies:  Q pi1: fst(t) pi2: snd(t) prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf pi2_wf squash_wf b_all_wf pi1_wf bag-map_wf bag_wf equal_wf and_wf bag-member_wf b_all-squash-exists-bag
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality independent_isectElimination hypothesis imageElimination productElimination dependent_pairFormation independent_pairFormation lambdaFormation dependent_functionElimination independent_functionElimination productEquality imageMemberEquality baseClosed isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[as:bag(A)].  \mforall{}[P:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    \mdownarrow{}\mexists{}bs:bag(A  \mtimes{}  B).  ((bag-map(\mlambda{}x.(fst(x));bs)  =  as)  \mwedge{}  b\_all(A  \mtimes{}  B;bs;x.\mdownarrow{}P[fst(x);snd(x)])) 
    supposing  b\_all(A;as;x.\mdownarrow{}\mexists{}y:B.  P[x;y])



Date html generated: 2016_05_15-PM-02_41_42
Last ObjectModification: 2016_01_16-AM-08_46_42

Theory : bags


Home Index