Nuprl Lemma : b_all-squash-exists-bag
∀[A,B:Type]. ∀[as:bag(A)]. ∀[P:A ⟶ B ⟶ ℙ].
  ↓∃bs:bag(A × B). ((bag-map(λx.(fst(x));bs) = as ∈ bag(A)) ∧ b_all(A × B;bs;x.let a,b = x in ↓P[a;b])) 
  supposing b_all(A;as;x.↓∃y:B. P[x;y])
Proof
Definitions occuring in Statement : 
b_all: b_all(T;b;x.P[x])
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
pi1: fst(t)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
bag-map: bag-map(f;bs)
, 
map: map(f;as)
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
b_all: b_all(T;b;x.P[x])
, 
empty-bag: {}
, 
uiff: uiff(P;Q)
, 
false: False
, 
cons-bag: x.b
, 
iff: P 
⇐⇒ Q
, 
top: Top
, 
true: True
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
bag_to_squash_list, 
b_all_wf, 
squash_wf, 
exists_wf, 
list_induction, 
list-subtype-bag, 
bag_wf, 
equal_wf, 
bag-map_wf, 
list_wf, 
nil_wf, 
cons_wf, 
bag-member-empty-iff, 
bag-member_wf, 
equal-wf-T-base, 
pi1_wf, 
b_all-cons, 
sq_stable__squash, 
cons-bag_wf, 
bag-map-cons, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
rename, 
functionEquality, 
because_Cache, 
independent_isectElimination, 
productEquality, 
independent_functionElimination, 
lambdaFormation, 
voidEquality, 
voidElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
equalityTransitivity, 
universeEquality, 
dependent_pairFormation, 
independent_pairFormation, 
independent_pairEquality, 
spreadEquality, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[as:bag(A)].  \mforall{}[P:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    \mdownarrow{}\mexists{}bs:bag(A  \mtimes{}  B).  ((bag-map(\mlambda{}x.(fst(x));bs)  =  as)  \mwedge{}  b\_all(A  \mtimes{}  B;bs;x.let  a,b  =  x  in  \mdownarrow{}P[a;b])) 
    supposing  b\_all(A;as;x.\mdownarrow{}\mexists{}y:B.  P[x;y])
Date html generated:
2017_10_01-AM-08_55_18
Last ObjectModification:
2017_07_26-PM-04_37_18
Theory : bags
Home
Index