Nuprl Lemma : bag-combine-is-map
∀[A,B:Type]. ∀[b:bag(A)]. ∀[f:A ⟶ B].  (⋃x∈b.{f[x]} = bag-map(f;b) ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
bag-map: bag-map(f;bs)
, 
single-bag: {x}
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
bag-combine-single-right-as-map, 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
bag-map_wf, 
eta_conv, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionExtensionality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[b:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  B].    (\mcup{}x\mmember{}b.\{f[x]\}  =  bag-map(f;b))
Date html generated:
2017_10_01-AM-08_47_47
Last ObjectModification:
2017_07_26-PM-04_32_10
Theory : bags
Home
Index