Nuprl Lemma : bag-filter-combine2
∀[T,U:Type]. ∀[P:T ⟶ 𝔹]. ∀[f:U ⟶ bag(T)]. ∀[b:bag(U)].  ([x∈⋃z∈b.f[z]|P[x]] = ⋃z∈b.[x∈f[z]|P[x]] ∈ bag({x:T| ↑P[x]} ))
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
bag-combine: ⋃x∈bs.f[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
top: Top
, 
compose: f o g
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
assert_wf, 
bag-filter-union, 
bag-map_wf, 
bag-union_wf, 
bag-filter_wf, 
iff_weakening_equal, 
bag-map-map, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
setEquality, 
cumulativity, 
functionExtensionality, 
sqequalRule, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
isect_memberFormation, 
axiomEquality
Latex:
\mforall{}[T,U:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:U  {}\mrightarrow{}  bag(T)].  \mforall{}[b:bag(U)].    ([x\mmember{}\mcup{}z\mmember{}b.f[z]|P[x]]  =  \mcup{}z\mmember{}b.[x\mmember{}f[z]|P[x]])
Date html generated:
2017_10_01-AM-08_58_06
Last ObjectModification:
2017_07_26-PM-04_40_14
Theory : bags
Home
Index