Nuprl Lemma : bag-max-ub

[A:Type]. ∀[f:A ⟶ ℤ]. ∀[bs:bag(A)]. ∀[x:A].  (f x) ≤ bag-max(f;bs) supposing x ↓∈ bs


Proof




Definitions occuring in Statement :  bag-max: bag-max(f;bs) bag-member: x ↓∈ bs bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B apply: a function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  bag-max: bag-max(f;bs) uall: [x:A]. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] prop: squash: T uimplies: supposing a le: A ≤ B not: ¬A false: False all: x:A. B[x] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cand: c∧ B
Lemmas referenced :  equal_wf and_wf bag-member-map bag_wf bag-max_wf less_than'_wf bag-member_wf bag-size-bag-member bag-map_wf imax-bag-ub
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality hypothesis applyEquality independent_functionElimination because_Cache productElimination dependent_pairFormation introduction sqequalRule imageMemberEquality baseClosed isect_memberFormation independent_pairEquality lambdaEquality dependent_functionElimination independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality voidElimination universeEquality independent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[bs:bag(A)].  \mforall{}[x:A].    (f  x)  \mleq{}  bag-max(f;bs)  supposing  x  \mdownarrow{}\mmember{}  bs



Date html generated: 2016_05_15-PM-02_51_13
Last ObjectModification: 2016_01_16-AM-08_41_53

Theory : bags


Home Index