Nuprl Lemma : bag-size-is-zero
∀[C:Type]. ∀[bs:bag(C)].  bs ~ {} supposing #(bs) = 0 ∈ ℤ
Proof
Definitions occuring in Statement : 
bag-size: #(bs), 
empty-bag: {}, 
bag: bag(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
sqequal: s ~ t, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
nat: ℕ
Lemmas referenced : 
bag_wf, 
nat_wf, 
bag-size_wf, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
bag-size-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
sqequalAxiom, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
universeEquality
Latex:
\mforall{}[C:Type].  \mforall{}[bs:bag(C)].    bs  \msim{}  \{\}  supposing  \#(bs)  =  0
Date html generated:
2016_05_15-PM-02_25_10
Last ObjectModification:
2016_01_16-AM-08_56_58
Theory : bags
Home
Index