Nuprl Lemma : bag-sum-nonneg
∀[A:Type]. ∀[f:A ⟶ ℤ]. ∀[ba:bag(A)].  0 ≤ bag-sum(ba;x.f[x]) supposing ∀x:A. (0 ≤ f[x])
Proof
Definitions occuring in Statement : 
bag-sum: bag-sum(ba;x.f[x])
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
zero-le-nat, 
bag-sum_wf_nat, 
le_wf, 
less_than'_wf, 
bag-sum_wf, 
all_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_set_memberEquality, 
applyEquality, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
intEquality, 
voidElimination, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[ba:bag(A)].    0  \mleq{}  bag-sum(ba;x.f[x])  supposing  \mforall{}x:A.  (0  \mleq{}  f[x])
Date html generated:
2016_05_15-PM-02_29_35
Last ObjectModification:
2015_12_27-AM-09_49_30
Theory : bags
Home
Index