Nuprl Lemma : bag-sum_wf

[A:Type]. ∀[f:A ⟶ ℤ]. ∀[ba:bag(A)].  (bag-sum(ba;x.f[x]) ∈ ℤ)


Proof




Definitions occuring in Statement :  bag-sum: bag-sum(ba;x.f[x]) bag: bag(T) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q bag-sum: bag-sum(ba;x.f[x]) so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s] so_apply: x[s1;s2] prop: squash: T true: True iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  list_wf permutation-invariant equal_wf list_accum_wf squash_wf true_wf cons_wf decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformimplies_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formual_prop_imp_lemma int_formula_prop_wf permutation_wf equal-wf-base bag_wf list_induction all_wf append_wf nil_wf list_ind_nil_lemma list_accum_cons_lemma list_accum_nil_lemma list_ind_cons_lemma iff_weakening_equal itermAdd_wf int_term_value_add_lemma itermConstant_wf int_term_value_constant_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality intEquality sqequalRule pertypeElimination productElimination thin equalityTransitivity hypothesis equalitySymmetry extract_by_obid isectElimination cumulativity hypothesisEquality lambdaFormation because_Cache rename lambdaEquality natural_numberEquality addEquality applyEquality functionExtensionality independent_functionElimination addLevel hyp_replacement imageElimination equalityUniverse levelHypothesis imageMemberEquality baseClosed dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll productEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[ba:bag(A)].    (bag-sum(ba;x.f[x])  \mmember{}  \mBbbZ{})



Date html generated: 2017_10_01-AM-08_47_52
Last ObjectModification: 2017_07_26-PM-04_32_12

Theory : bags


Home Index