Nuprl Lemma : bag-sum_wf_nat

[A:Type]. ∀[f:A ⟶ ℕ]. ∀[ba:bag(A)].  (bag-sum(ba;x.f[x]) ∈ ℕ)


Proof




Definitions occuring in Statement :  bag-sum: bag-sum(ba;x.f[x]) bag: bag(T) nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q squash: T nat: bag-sum: bag-sum(ba;x.f[x]) false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top guard: {T} le: A ≤ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q less_than': less_than'(a;b) less_than: a < b cons: [a b] assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q int_iseg: {i...j} cand: c∧ B
Lemmas referenced :  squash_wf le_wf bag-sum_wf list_wf permutation_wf equal_wf equal-wf-base bag_wf nat_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf less_than'_wf list_accum_wf length_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma non_neg_length decidable__lt lelt_wf decidable__assert null_wf list-cases list_accum_nil_lemma product_subtype_list null_cons_lemma last-lemma-sq pos_length iff_transitivity not_wf equal-wf-T-base assert_wf bnot_wf assert_of_null iff_weakening_uiff assert_of_bnot firstn_wf length_firstn zero-le-nat append_wf cons_wf last_wf nil_wf add_nat_wf add-is-int-iff itermAdd_wf int_term_value_add_lemma length_wf_nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin natural_numberEquality cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality hypothesis because_Cache pertypeElimination productElimination equalityTransitivity equalitySymmetry lambdaFormation rename imageMemberEquality baseClosed dependent_functionElimination independent_functionElimination productEquality imageElimination dependent_set_memberEquality axiomEquality isect_memberEquality functionEquality universeEquality setElimination intWeakElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll independent_pairEquality addEquality unionElimination applyLambdaEquality hypothesis_subsumption promote_hyp impliesFunctionality pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[ba:bag(A)].    (bag-sum(ba;x.f[x])  \mmember{}  \mBbbN{})



Date html generated: 2017_10_01-AM-08_47_56
Last ObjectModification: 2017_07_26-PM-04_32_15

Theory : bags


Home Index