Nuprl Lemma : bag-void-sq-empty

[T:Type]. ∀x:bag(T). {} supposing ¬T


Proof




Definitions occuring in Statement :  empty-bag: {} bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a implies:  Q bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q or: P ∨ Q nil: [] it: empty-bag: {} cons: [a b] not: ¬A false: False prop:
Lemmas referenced :  equal-empty-bag list-cases product_subtype_list empty-bag_wf list_wf permutation_wf istype-void bag_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination independent_functionElimination pointwiseFunctionalityForEquality because_Cache hypothesis sqequalRule pertypeElimination promote_hyp productElimination equalityTransitivity equalitySymmetry inhabitedIsType unionElimination hypothesis_subsumption voidElimination equalityIstype productIsType universeIsType sqequalBase axiomSqEquality functionIsType lambdaEquality_alt isect_memberEquality_alt isectIsTypeImplies functionIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:bag(T).  x  \msim{}  \{\}  supposing  \mneg{}T



Date html generated: 2019_10_15-AM-10_59_53
Last ObjectModification: 2019_08_15-AM-10_32_40

Theory : bags


Home Index