Nuprl Lemma : eval_bag_wf
∀[T:Type]. ∀[b:bag(T)].  (eval_bag(b) ∈ bag(T))
Proof
Definitions occuring in Statement : 
eval_bag: eval_bag(b)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
eval_bag: eval_bag(b)
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
bag_wf, 
equal-wf-base, 
list_wf, 
permutation_wf, 
quotient-member-eq, 
permutation-equiv, 
eval_list_wf, 
eval_list_sq, 
subtype_rel_list, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
productEquality, 
cumulativity, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].    (eval\_bag(b)  \mmember{}  bag(T))
Date html generated:
2016_05_15-PM-02_21_37
Last ObjectModification:
2015_12_27-AM-09_55_28
Theory : bags
Home
Index