Nuprl Lemma : eval_bag_wf

[T:Type]. ∀[b:bag(T)].  (eval_bag(b) ∈ bag(T))


Proof




Definitions occuring in Statement :  eval_bag: eval_bag(b) bag: bag(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q eval_bag: eval_bag(b) prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] implies:  Q subtype_rel: A ⊆B top: Top
Lemmas referenced :  bag_wf equal-wf-base list_wf permutation_wf quotient-member-eq permutation-equiv eval_list_wf eval_list_sq subtype_rel_list top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache universeEquality pointwiseFunctionalityForEquality pertypeElimination productElimination productEquality cumulativity lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination applyEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].    (eval\_bag(b)  \mmember{}  bag(T))



Date html generated: 2016_05_15-PM-02_21_37
Last ObjectModification: 2015_12_27-AM-09_55_28

Theory : bags


Home Index