Nuprl Lemma : only-bag-map
∀[f:Top]. ∀[T:Type]. ∀[b:bag(T)].  only(bag-map(f;b)) ~ f only(b) supposing #(b) = 1 ∈ ℤ
Proof
Definitions occuring in Statement : 
bag-only: only(bs)
, 
bag-size: #(bs)
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
single-bag: {x}
, 
bag-only: only(bs)
, 
bag-map: bag-map(f;bs)
, 
top: Top
Lemmas referenced : 
bag-size-one, 
bag-only_wf, 
equal_wf, 
equal-wf-T-base, 
bag-size_wf, 
nat_wf, 
bag_wf, 
top_wf, 
map_cons_lemma, 
map_nil_lemma, 
reduce_hd_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
because_Cache, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalAxiom, 
intEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
baseClosed, 
isect_memberEquality, 
universeEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[f:Top].  \mforall{}[T:Type].  \mforall{}[b:bag(T)].    only(bag-map(f;b))  \msim{}  f  only(b)  supposing  \#(b)  =  1
Date html generated:
2017_10_01-AM-08_52_37
Last ObjectModification:
2017_07_26-PM-04_34_07
Theory : bags
Home
Index