Nuprl Lemma : only-bag-map

[f:Top]. ∀[T:Type]. ∀[b:bag(T)].  only(bag-map(f;b)) only(b) supposing #(b) 1 ∈ ℤ


Proof




Definitions occuring in Statement :  bag-only: only(bs) bag-size: #(bs) bag-map: bag-map(f;bs) bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] top: Top apply: a natural_number: $n int: universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B nat: single-bag: {x} bag-only: only(bs) bag-map: bag-map(f;bs) top: Top
Lemmas referenced :  bag-size-one bag-only_wf equal_wf equal-wf-T-base bag-size_wf nat_wf bag_wf top_wf map_cons_lemma map_nil_lemma reduce_hd_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis cumulativity because_Cache lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination sqequalAxiom intEquality applyEquality lambdaEquality setElimination rename sqequalRule baseClosed isect_memberEquality universeEquality voidElimination voidEquality

Latex:
\mforall{}[f:Top].  \mforall{}[T:Type].  \mforall{}[b:bag(T)].    only(bag-map(f;b))  \msim{}  f  only(b)  supposing  \#(b)  =  1



Date html generated: 2017_10_01-AM-08_52_37
Last ObjectModification: 2017_07_26-PM-04_34_07

Theory : bags


Home Index