Nuprl Lemma : bag-only_wf

[T:Type]. ∀[bs:bag(T)].  only(bs) ∈ supposing #(bs) 1 ∈ ℤ


Proof




Definitions occuring in Statement :  bag-only: only(bs) bag-size: #(bs) bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag: bag(T) all: x:A. B[x] prop: quotient: x,y:A//B[x; y] and: P ∧ Q bag-size: #(bs) bag-only: only(bs) ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top squash: T true: True subtype_rel: A ⊆B nat: uiff: uiff(P;Q) guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  member-permutation pos_length2 hd_member length-one-member bag_wf nat_wf bag-size_wf equal_wf true_wf squash_wf member_wf equal-wf-base int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le hd_wf permutation-length permutation_weakening permutation_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lemma_by_obid isectElimination thin hypothesisEquality hypothesis promote_hyp lambdaFormation equalityTransitivity equalitySymmetry because_Cache dependent_functionElimination independent_isectElimination pointwiseFunctionality sqequalRule pertypeElimination productElimination cumulativity unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll productEquality applyEquality imageElimination imageMemberEquality baseClosed axiomEquality setElimination rename universeEquality independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    only(bs)  \mmember{}  T  supposing  \#(bs)  =  1



Date html generated: 2016_05_15-PM-02_34_51
Last ObjectModification: 2016_01_16-AM-08_53_09

Theory : bags


Home Index