Nuprl Lemma : length-one-member
∀[T:Type]. ∀[L:T List].  ∀[x,y:T].  (x = y ∈ T) supposing ((y ∈ L) and (x ∈ L)) supposing ||L|| = 1 ∈ ℤ
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
true: True
, 
false: False
, 
prop: ℙ
, 
cons: [a / b]
, 
top: Top
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
member_singleton, 
list_wf, 
length_wf, 
cons_wf, 
l_member_wf, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
non_neg_length, 
length_of_cons_lemma, 
product_subtype_list, 
equal_wf, 
int_subtype_base, 
subtype_base_sq, 
length_of_nil_lemma, 
list-cases
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
promote_hyp, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
hypothesis_subsumption, 
productElimination, 
voidEquality, 
rename, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
addEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    \mforall{}[x,y:T].    (x  =  y)  supposing  ((y  \mmember{}  L)  and  (x  \mmember{}  L))  supposing  ||L||  =  1
Date html generated:
2016_05_14-PM-01_27_50
Last ObjectModification:
2016_01_15-AM-08_28_54
Theory : list_1
Home
Index