Nuprl Lemma : similar-bags_wf

[A:Type]. ∀[as,bs:bag(A)].  (similar-bags(A;as;bs) ∈ ℙ)


Proof




Definitions occuring in Statement :  similar-bags: similar-bags(A;as;bs) bag: bag(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T similar-bags: similar-bags(A;as;bs) so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s]
Lemmas referenced :  all_wf iff_wf and_wf bag-member_wf less_than_wf bag-size_wf nat_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis natural_numberEquality applyEquality setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[as,bs:bag(A)].    (similar-bags(A;as;bs)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-02_42_12
Last ObjectModification: 2015_12_27-AM-09_39_51

Theory : bags


Home Index