Nuprl Lemma : single-valued-bag-filter
∀[A:Type]. ∀[b:bag(A)]. ∀[p:{x:A| x ↓∈ b}  ⟶ 𝔹].
  single-valued-bag([x∈b|p[x]];A) supposing ∀x,y:A.  (x ↓∈ b 
⇒ y ↓∈ b 
⇒ (↑p[x]) 
⇒ (↑p[y]) 
⇒ (x = y ∈ A))
Proof
Definitions occuring in Statement : 
single-valued-bag: single-valued-bag(b;T)
, 
bag-member: x ↓∈ bs
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
single-valued-bag: single-valued-bag(b;T)
Lemmas referenced : 
bag-member-filter2, 
bag-member_wf, 
bag-filter-wf2, 
subtype_rel_bag, 
assert_wf, 
all_wf, 
equal_wf, 
bool_wf, 
bag_wf
Rules used in proof : 
cut, 
hypothesis, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
setEquality, 
cumulativity, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
lambdaFormation, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[b:bag(A)].  \mforall{}[p:\{x:A|  x  \mdownarrow{}\mmember{}  b\}    {}\mrightarrow{}  \mBbbB{}].
    single-valued-bag([x\mmember{}b|p[x]];A) 
    supposing  \mforall{}x,y:A.    (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  y  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\muparrow{}p[x])  {}\mRightarrow{}  (\muparrow{}p[y])  {}\mRightarrow{}  (x  =  y))
Date html generated:
2017_10_01-AM-08_57_37
Last ObjectModification:
2017_07_26-PM-04_39_42
Theory : bags
Home
Index