Nuprl Lemma : single-valued-bag-filter

[A:Type]. ∀[b:bag(A)]. ∀[p:{x:A| x ↓∈ b}  ⟶ 𝔹].
  single-valued-bag([x∈b|p[x]];A) supposing ∀x,y:A.  (x ↓∈  y ↓∈  (↑p[x])  (↑p[y])  (x y ∈ A))


Proof




Definitions occuring in Statement :  single-valued-bag: single-valued-bag(b;T) bag-member: x ↓∈ bs bag-filter: [x∈b|p[x]] bag: bag(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B guard: {T} single-valued-bag: single-valued-bag(b;T)
Lemmas referenced :  bag-member-filter2 bag-member_wf bag-filter-wf2 subtype_rel_bag assert_wf all_wf equal_wf bool_wf bag_wf
Rules used in proof :  cut hypothesis sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesisEquality independent_functionElimination introduction extract_by_obid isectElimination because_Cache sqequalRule lambdaEquality applyEquality functionExtensionality setEquality cumulativity setElimination rename dependent_set_memberEquality productElimination independent_isectElimination equalityTransitivity equalitySymmetry functionEquality universeEquality isect_memberFormation lambdaFormation axiomEquality isect_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[b:bag(A)].  \mforall{}[p:\{x:A|  x  \mdownarrow{}\mmember{}  b\}    {}\mrightarrow{}  \mBbbB{}].
    single-valued-bag([x\mmember{}b|p[x]];A) 
    supposing  \mforall{}x,y:A.    (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  y  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\muparrow{}p[x])  {}\mRightarrow{}  (\muparrow{}p[y])  {}\mRightarrow{}  (x  =  y))



Date html generated: 2017_10_01-AM-08_57_37
Last ObjectModification: 2017_07_26-PM-04_39_42

Theory : bags


Home Index