Nuprl Lemma : single-valued-bag-map
∀[A,B:Type]. ∀[as:bag(A)]. ∀[f:A ⟶ B].  single-valued-bag(bag-map(f;as);B) supposing single-valued-bag(as;A)
Proof
Definitions occuring in Statement : 
single-valued-bag: single-valued-bag(b;T)
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
single-valued-bag: single-valued-bag(b;T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
bag-member-map, 
and_wf, 
equal_wf, 
bag-member_wf, 
bag-map_wf, 
single-valued-bag_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
dependent_functionElimination, 
hypothesis, 
productElimination, 
independent_isectElimination, 
imageElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[as:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  B].
    single-valued-bag(bag-map(f;as);B)  supposing  single-valued-bag(as;A)
Date html generated:
2016_05_15-PM-02_42_54
Last ObjectModification:
2015_12_27-AM-09_39_25
Theory : bags
Home
Index