Nuprl Lemma : single-valued-bag-map

[A,B:Type]. ∀[as:bag(A)]. ∀[f:A ⟶ B].  single-valued-bag(bag-map(f;as);B) supposing single-valued-bag(as;A)


Proof




Definitions occuring in Statement :  single-valued-bag: single-valued-bag(b;T) bag-map: bag-map(f;bs) bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a single-valued-bag: single-valued-bag(b;T) all: x:A. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q squash: T exists: x:A. B[x] prop:
Lemmas referenced :  bag-member-map and_wf equal_wf bag-member_wf bag-map_wf single-valued-bag_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation lemma_by_obid isectElimination thin hypothesisEquality because_Cache dependent_functionElimination hypothesis productElimination independent_isectElimination imageElimination independent_functionElimination dependent_set_memberEquality independent_pairFormation applyEquality lambdaEquality setElimination rename setEquality equalityTransitivity equalitySymmetry sqequalRule axiomEquality isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[as:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  B].
    single-valued-bag(bag-map(f;as);B)  supposing  single-valued-bag(as;A)



Date html generated: 2016_05_15-PM-02_42_54
Last ObjectModification: 2015_12_27-AM-09_39_25

Theory : bags


Home Index