Nuprl Lemma : single-valued-sub-bag

[T:Type]. ∀[as,bs:bag(T)].  (single-valued-bag(bs;T)  sub-bag(T;as;bs)  single-valued-bag(as;T))


Proof




Definitions occuring in Statement :  single-valued-bag: single-valued-bag(b;T) sub-bag: sub-bag(T;as;bs) bag: bag(T) uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q single-valued-bag: single-valued-bag(b;T) all: x:A. B[x] prop: guard: {T} uimplies: supposing a
Lemmas referenced :  sub-bag-member bag-member_wf sub-bag_wf single-valued-bag_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination independent_functionElimination because_Cache sqequalRule lambdaEquality axiomEquality isect_memberEquality universeEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].
    (single-valued-bag(bs;T)  {}\mRightarrow{}  sub-bag(T;as;bs)  {}\mRightarrow{}  single-valued-bag(as;T))



Date html generated: 2016_05_15-PM-02_45_31
Last ObjectModification: 2015_12_27-AM-09_37_18

Theory : bags


Home Index