Nuprl Lemma : sub-bag-combine
∀[T,U:Type].  ∀f:T ⟶ bag(U). ∀b1,b2:bag(T).  (sub-bag(T;b1;b2) 
⇒ sub-bag(U;⋃x∈b1.f[x];⋃x∈b2.f[x]))
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs)
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sub-bag: sub-bag(T;as;bs)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
bag-combine-append-left, 
sub-bag_wf, 
squash_wf, 
true_wf, 
bag_wf, 
bag-combine_wf, 
iff_weakening_equal, 
equal_wf, 
bag-append_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
cumulativity, 
sqequalRule, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_pairFormation, 
hyp_replacement, 
Error :applyLambdaEquality, 
functionEquality
Latex:
\mforall{}[T,U:Type].    \mforall{}f:T  {}\mrightarrow{}  bag(U).  \mforall{}b1,b2:bag(T).    (sub-bag(T;b1;b2)  {}\mRightarrow{}  sub-bag(U;\mcup{}x\mmember{}b1.f[x];\mcup{}x\mmember{}b2.f[x]))
Date html generated:
2016_10_25-AM-10_26_28
Last ObjectModification:
2016_07_12-AM-06_42_20
Theory : bags
Home
Index