Nuprl Lemma : sub-bag-filter2
∀T:Type. ∀p1,p2:T ⟶ 𝔹. ∀b,c:bag(T).
  (sub-bag(T;b;[x∈c|p1[x]]) 
⇒ sub-bag(T;b;[x∈c|p2[x]]) 
⇒ sub-bag(T;b;[x∈c|p1[x] ∧b p2[x]]))
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs)
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
band: p ∧b q
, 
bool: 𝔹
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
sub-bag-filter, 
band_wf, 
assert_of_band, 
bag-member_wf, 
sub-bag_wf, 
bag-filter_wf, 
subtype_rel_bag, 
assert_wf, 
bag_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
independent_isectElimination, 
setEquality, 
setElimination, 
rename, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}p1,p2:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}b,c:bag(T).
    (sub-bag(T;b;[x\mmember{}c|p1[x]])  {}\mRightarrow{}  sub-bag(T;b;[x\mmember{}c|p2[x]])  {}\mRightarrow{}  sub-bag(T;b;[x\mmember{}c|p1[x]  \mwedge{}\msubb{}  p2[x]]))
Date html generated:
2016_05_15-PM-02_45_22
Last ObjectModification:
2015_12_27-AM-09_37_27
Theory : bags
Home
Index