Nuprl Lemma : sub-bag-filter2

T:Type. ∀p1,p2:T ⟶ 𝔹. ∀b,c:bag(T).
  (sub-bag(T;b;[x∈c|p1[x]])  sub-bag(T;b;[x∈c|p2[x]])  sub-bag(T;b;[x∈c|p1[x] ∧b p2[x]]))


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag-filter: [x∈b|p[x]] bag: bag(T) band: p ∧b q bool: 𝔹 so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a prop: subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  sub-bag-filter band_wf assert_of_band bag-member_wf sub-bag_wf bag-filter_wf subtype_rel_bag assert_wf bag_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality applyEquality hypothesis productElimination independent_functionElimination independent_pairFormation independent_isectElimination setEquality setElimination rename because_Cache functionEquality universeEquality

Latex:
\mforall{}T:Type.  \mforall{}p1,p2:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}b,c:bag(T).
    (sub-bag(T;b;[x\mmember{}c|p1[x]])  {}\mRightarrow{}  sub-bag(T;b;[x\mmember{}c|p2[x]])  {}\mRightarrow{}  sub-bag(T;b;[x\mmember{}c|p1[x]  \mwedge{}\msubb{}  p2[x]]))



Date html generated: 2016_05_15-PM-02_45_22
Last ObjectModification: 2015_12_27-AM-09_37_27

Theory : bags


Home Index