Nuprl Lemma : sub-bag-filter
ā[T:Type]. āp:T ā¶ š¹. āb,c:bag(T). (sub-bag(T;b;[xāc|p[x]])
āā sub-bag(T;b;c) ā§ (āx:T. (x āā b
ā (āp[x]))))
Proof
Definitions occuring in Statement :
bag-member: x āā bs
,
sub-bag: sub-bag(T;as;bs)
,
bag-filter: [xāb|p[x]]
,
bag: bag(T)
,
assert: āb
,
bool: š¹
,
uall: ā[x:A]. B[x]
,
so_apply: x[s]
,
all: āx:A. B[x]
,
iff: P
āā Q
,
implies: P
ā Q
,
and: P ā§ Q
,
function: x:A ā¶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
all: āx:A. B[x]
,
iff: P
āā Q
,
and: P ā§ Q
,
implies: P
ā Q
,
cand: A cā§ B
,
member: t ā T
,
so_apply: x[s]
,
prop: ā
,
so_lambda: Ī»2x.t[x]
,
subtype_rel: A ār B
,
rev_implies: P
ā Q
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
sub-bag: sub-bag(T;as;bs)
,
exists: āx:A. B[x]
,
top: Top
,
respects-equality: respects-equality(S;T)
,
true: True
,
squash: āT
,
guard: {T}
Lemmas referenced :
assert_witness,
bag-member_wf,
sub-bag_wf,
bag-filter_wf,
istype-assert,
bag_wf,
bool_wf,
istype-universe,
bag-split,
sub-bag-append-trivial1,
bnot_wf,
sub-bag-member,
bag-member-filter,
equal_wf,
subtype_rel_bag,
assert_wf,
bag-filter-append,
istype-void,
bag-append_wf,
respects-equality-bag,
subtype-respects-equality,
bag-filter-trivial2,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
lambdaFormation_alt,
independent_pairFormation,
cut,
hypothesis,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
applyEquality,
hypothesisEquality,
independent_functionElimination,
universeIsType,
because_Cache,
sqequalRule,
lambdaEquality_alt,
productElimination,
productIsType,
functionIsType,
inhabitedIsType,
instantiate,
universeEquality,
dependent_functionElimination,
hyp_replacement,
equalitySymmetry,
applyLambdaEquality,
independent_isectElimination,
equalityTransitivity,
setEquality,
setElimination,
rename,
setIsType,
isect_memberEquality_alt,
voidElimination,
dependent_pairFormation_alt,
equalityIstype,
productEquality,
natural_numberEquality,
imageElimination,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[T:Type]
\mforall{}p:T {}\mrightarrow{} \mBbbB{}. \mforall{}b,c:bag(T).
(sub-bag(T;b;[x\mmember{}c|p[x]]) \mLeftarrow{}{}\mRightarrow{} sub-bag(T;b;c) \mwedge{} (\mforall{}x:T. (x \mdownarrow{}\mmember{} b {}\mRightarrow{} (\muparrow{}p[x]))))
Date html generated:
2019_10_15-AM-11_02_00
Last ObjectModification:
2018_11_30-AM-10_08_19
Theory : bags
Home
Index