Nuprl Lemma : bag-filter-trivial2
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  [x∈bs|p[x]] = bs ∈ bag(T) supposing ∀x:T. (x ↓∈ bs 
⇒ (↑p[x]))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
cons-bag: x.b
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_or: a ↓∨ b
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
bag_to_squash_list, 
all_wf, 
bag-member_wf, 
assert_wf, 
quotient-member-eq, 
list_wf, 
permutation_wf, 
permutation-equiv, 
filter_wf5, 
l_member_wf, 
list_induction, 
list-subtype-bag, 
filter_nil_lemma, 
permutation-nil, 
nil_wf, 
filter_cons_lemma, 
bag-member-cons, 
cons_wf, 
equal_wf, 
bag_wf, 
bag-filter_wf, 
subtype_rel_bag, 
bool_wf, 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
btrue_wf, 
true_wf, 
permutation-cons2
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
setElimination, 
setEquality, 
independent_functionElimination, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
inlFormation, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
isect_memberFormation, 
axiomEquality, 
equalityTransitivity, 
instantiate, 
independent_pairFormation, 
natural_numberEquality, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    [x\mmember{}bs|p[x]]  =  bs  supposing  \mforall{}x:T.  (x  \mdownarrow{}\mmember{}  bs  {}\mRightarrow{}  (\muparrow{}p[x]))
Date html generated:
2016_10_25-AM-10_30_14
Last ObjectModification:
2016_07_12-AM-06_46_17
Theory : bags
Home
Index