Nuprl Lemma : bag-filter-trivial2

[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  [x∈bs|p[x]] bs ∈ bag(T) supposing ∀x:T. (x ↓∈ bs  (↑p[x]))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-filter: [x∈b|p[x]] bag: bag(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] bag-filter: [x∈b|p[x]] bag: bag(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B top: Top cons-bag: x.b uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) sq_or: a ↓∨ b or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q true: True rev_implies:  Q sq_type: SQType(T) guard: {T}
Lemmas referenced :  bag_to_squash_list all_wf bag-member_wf assert_wf quotient-member-eq list_wf permutation_wf permutation-equiv filter_wf5 l_member_wf list_induction list-subtype-bag filter_nil_lemma permutation-nil nil_wf filter_cons_lemma bag-member-cons cons_wf equal_wf bag_wf bag-filter_wf subtype_rel_bag bool_wf subtype_base_sq bool_subtype_base iff_imp_equal_bool btrue_wf true_wf permutation-cons2
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis equalitySymmetry hyp_replacement Error :applyLambdaEquality,  cumulativity sqequalRule lambdaEquality functionEquality applyEquality functionExtensionality rename independent_isectElimination dependent_functionElimination setElimination setEquality independent_functionElimination because_Cache isect_memberEquality voidElimination voidEquality lambdaFormation inlFormation imageMemberEquality baseClosed universeEquality isect_memberFormation axiomEquality equalityTransitivity instantiate independent_pairFormation natural_numberEquality inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    [x\mmember{}bs|p[x]]  =  bs  supposing  \mforall{}x:T.  (x  \mdownarrow{}\mmember{}  bs  {}\mRightarrow{}  (\muparrow{}p[x]))



Date html generated: 2016_10_25-AM-10_30_14
Last ObjectModification: 2016_07_12-AM-06_46_17

Theory : bags


Home Index