Nuprl Lemma : bag-drop-property2
∀[T:Type]
  ∀eq:EqDecider(T). ∀x:T. ∀bs:bag(T).
    (bag-no-repeats(T;bs)
    
⇒ x ↓∈ bs
    
⇒ {(bs = ({x} + bag-drop(eq;bs;x)) ∈ bag(T)) ∧ bag-no-repeats(T;bag-drop(eq;bs;x)) ∧ (¬x ↓∈ bag-drop(eq;bs;x))})
Proof
Definitions occuring in Statement : 
bag-drop: bag-drop(eq;bs;a)
, 
bag-member: x ↓∈ bs
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
bag-append: as + bs
, 
single-bag: {x}
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
squash: ↓T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
Lemmas referenced : 
bag-member-single, 
single-bag_wf, 
bag-no-repeats-append, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
bag-drop-no-repeats, 
deq_wf, 
bag_wf, 
bag-no-repeats_wf, 
bag-drop_wf, 
bag-member_wf, 
bag-drop-property
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
introduction, 
unionElimination, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
independent_pairEquality, 
axiomEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
lambdaEquality, 
universeEquality, 
independent_isectElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
because_Cache
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}bs:bag(T).
        (bag-no-repeats(T;bs)
        {}\mRightarrow{}  x  \mdownarrow{}\mmember{}  bs
        {}\mRightarrow{}  \{(bs  =  (\{x\}  +  bag-drop(eq;bs;x)))
              \mwedge{}  bag-no-repeats(T;bag-drop(eq;bs;x))
              \mwedge{}  (\mneg{}x  \mdownarrow{}\mmember{}  bag-drop(eq;bs;x))\})
Date html generated:
2016_05_15-PM-08_04_41
Last ObjectModification:
2016_01_16-PM-01_29_22
Theory : bags_2
Home
Index