Nuprl Lemma : bag-map'_wf

[B,A:Type]. ∀[b:bag(A)]. ∀[f:{x:A| x ↓∈ b}  ⟶ B].  (bag-map'(f;b) ∈ bag(B))


Proof




Definitions occuring in Statement :  bag-map': bag-map'(f;b) bag-member: x ↓∈ bs bag: bag(T) uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] prop: squash: T exists: x:A. B[x] bag-map': bag-map'(f;b) uimplies: supposing a all: x:A. B[x] true: True subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  iff_weakening_equal member_wf subtype_rel_bag true_wf squash_wf all_wf bag-subtype list-subtype-bag bag-map_wf bag-eq-subtype bag_to_squash_list bag_wf bag-member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity functionEquality setEquality hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache universeEquality isect_memberFormation introduction sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality imageElimination productElimination independent_isectElimination dependent_functionElimination natural_numberEquality lambdaFormation cumulativity applyEquality lambdaEquality setElimination rename imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[B,A:Type].  \mforall{}[b:bag(A)].  \mforall{}[f:\{x:A|  x  \mdownarrow{}\mmember{}  b\}    {}\mrightarrow{}  B].    (bag-map'(f;b)  \mmember{}  bag(B))



Date html generated: 2016_05_15-PM-07_58_33
Last ObjectModification: 2016_01_16-PM-01_30_17

Theory : bags_2


Home Index