Nuprl Lemma : bag-map'_wf
∀[B,A:Type]. ∀[b:bag(A)]. ∀[f:{x:A| x ↓∈ b}  ⟶ B].  (bag-map'(f;b) ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag-map': bag-map'(f;b)
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
bag-map': bag-map'(f;b)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
iff_weakening_equal, 
member_wf, 
subtype_rel_bag, 
true_wf, 
squash_wf, 
all_wf, 
bag-subtype, 
list-subtype-bag, 
bag-map_wf, 
bag-eq-subtype, 
bag_to_squash_list, 
bag_wf, 
bag-member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
functionEquality, 
setEquality, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
universeEquality, 
isect_memberFormation, 
introduction, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
imageElimination, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
lambdaFormation, 
cumulativity, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[B,A:Type].  \mforall{}[b:bag(A)].  \mforall{}[f:\{x:A|  x  \mdownarrow{}\mmember{}  b\}    {}\mrightarrow{}  B].    (bag-map'(f;b)  \mmember{}  bag(B))
Date html generated:
2016_05_15-PM-07_58_33
Last ObjectModification:
2016_01_16-PM-01_30_17
Theory : bags_2
Home
Index