Nuprl Lemma : equal-in-bar
∀[T:Type]. (value-type(T) ⇒ (∀b:bar(T). ∀a:T.  ((b = a ∈ bar(T)) ⇒ (b = a ∈ T))))
Proof
Definitions occuring in Statement : 
bar: bar(T), 
value-type: value-type(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
guard: {T}, 
label: ...$L... t, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
strong-subtype: strong-subtype(A;B), 
cand: A c∧ B
Lemmas referenced : 
strong-subtype-bar, 
strong-subtype-implies, 
equal_wf, 
bar_wf, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
addLevel, 
levelHypothesis, 
cumulativity, 
applyEquality, 
productElimination, 
sqequalRule, 
lambdaEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  (value-type(T)  {}\mRightarrow{}  (\mforall{}b:bar(T).  \mforall{}a:T.    ((b  =  a)  {}\mRightarrow{}  (b  =  a))))
Date html generated:
2018_05_21-PM-10_17_29
Last ObjectModification:
2017_07_26-PM-06_36_16
Theory : bar!type
Home
Index