Nuprl Lemma : compact-product

[T:Type]. ∀[S:T ⟶ Type].  (compact-type(T)  (∀t:T. compact-type(S[t]))  compact-type(t:T × S[t]))


Proof




Definitions occuring in Statement :  compact-type: compact-type(T) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q compact-type: compact-type(T) all: x:A. B[x] member: t ∈ T so_apply: x[s] prop: so_lambda: λ2x.t[x] exists: x:A. B[x] subtype_rel: A ⊆B or: P ∨ Q isr: isr(x) not: ¬A false: False guard: {T} squash: T true: True uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  bool_wf all_wf compact-type_wf isr_wf exists_wf equal-wf-T-base or_wf equal-wf-base btrue_neq_bfalse equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule functionEquality productEquality cumulativity hypothesisEquality applyEquality functionExtensionality cut introduction extract_by_obid hypothesis isectElimination thin lambdaEquality universeEquality rename dependent_functionElimination because_Cache unionElimination productElimination inlFormation dependent_pairEquality baseClosed independent_functionElimination voidElimination equalityTransitivity equalitySymmetry dependent_pairFormation inrFormation imageElimination equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[S:T  {}\mrightarrow{}  Type].
    (compact-type(T)  {}\mRightarrow{}  (\mforall{}t:T.  compact-type(S[t]))  {}\mRightarrow{}  compact-type(t:T  \mtimes{}  S[t]))



Date html generated: 2017_10_01-AM-08_28_57
Last ObjectModification: 2017_07_26-PM-04_23_44

Theory : basic


Home Index