Nuprl Lemma : iflift_sq_1

[c:𝔹]. ∀[f,x,y:Top].  (f[if then else fi if then f[x] else f[y] fi )


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination because_Cache productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination voidElimination axiomSqEquality inhabitedIsType isect_memberEquality universeIsType

Latex:
\mforall{}[c:\mBbbB{}].  \mforall{}[f,x,y:Top].    (f[if  c  then  x  else  y  fi  ]  \msim{}  if  c  then  f[x]  else  f[y]  fi  )



Date html generated: 2019_10_15-AM-10_46_36
Last ObjectModification: 2018_09_27-AM-09_41_13

Theory : basic


Home Index